Purification and molecular cloning of rat 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase.
نویسندگان
چکیده
2-Amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD; EC 4.1.1.45) is one of the important enzymes regulating tryptophan-niacin metabolism. In the present study, we purified the enzyme from rat liver and kidney, and cloned the cDNA encoding rat ACMSD. The molecular masses of rat ACMSDs purified from the liver and kidney were both estimated to be 39 kDa by SDS/PAGE. Analysis of N-terminal amino acid sequences showed that these two ACMSDs share the same sequence. An expressed sequence tag (EST) of the mouse cited from the DNA database was found to be identical with this N-terminal sequence. Reverse transcription-PCR (RT-PCR) was performed using synthetic oligonucleotide primers having the partial sequences of the EST, and then cDNAs encoding rat ACMSDs were isolated by using subsequent 3'-rapid amplification of cDNA ends and RT-PCR methods. ACMSD cDNAs isolated from liver and kidney were shown to be identical, consisting of a 1008 bp open reading frame (ORF) encoding 336 amino acid residues with a molecular mass of 38091 Da. The rat ACMSD ORF was inserted into a mammalian expression vector, before transfection into human hepatoma HepG2 cells. The transfected cells expressed ACMSD activity, whereas the enzyme activity was not detected in uninfected parental HepG2 cells. The distribution of ACMSD mRNA expression in various tissues was investigated in the rat by RT-PCR. ACMSD was expressed in the liver and kidney, but not in the other principal organs examined.
منابع مشابه
Structural and Mechanistic Studies on α-Amino β- Carboxymuconate ε-Semialdehyde Decarboxylase and α-Aminomuconate ε-Semialdehyde Dehydrogenase
α-Amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) and αaminomuconate-ε-semialdehyde dehydrogenase (AMSDH) are two neighboring enzymes in the L-tryptophan and 2-nitrobenzoic acid degradation pathways. The substrates of the two enzymes, α-amino-β-carboxymuconate-ε-semialdehyde (ACMS) and α-aminomuconate-ε-semialdehyde (2-AMS), are unstable and spontaneously decay to quinolinic acid a...
متن کاملPartial Cloning and Nucleotide Sequencing of Glutamate Decarboxylase Gene Isoform 65 from Human Brain
Background: Gamma -aminobutyric acid (GABA), a non-protein amino acid acts as an inhibitory neurotransmitter in the central nervous system of mammalians. The glutamate decarboxylase (GAD) is responsible for the conversion of L-glutamate to GABA. The human brain has two isoforms of this enzyme, GAD65 and GAD67 that differ in molecular weight, amino acid sequence, antigenicity, cellular location ...
متن کاملEffects of Various Dietary
In this study, we investigated the effects of short-chain, middle-chain, and long-ehain fatty acids on the activity of rat liver ct-amino-fi-carboxymuconate-E-semialdehyde decarboxylase [EC 4.1.1.45] (ACMSD), a key enzyme of tryptophan-niacin metabolism. Moreover, we examined the cholesterol metabolism and lipid peroxidation in re)ation to ACMSD actiyity in rats. When diets containing 2%, S%, a...
متن کاملIdentification and molecular cloning of glutamate decarboxylase gene from Lactobacillus casei
Gamma-amino butyric acid (GABA) possesses several physiological functions such as neurotransmission, induction of hypotension, diuretic and tranquilizer effects. Production of GABA-enriched products by lactic acid bacteria has been a focus of different researches in recent years because of their safety and health-promoting specifities. In this study, glutamate decarboxylase (gad) gene of a loca...
متن کاملIdentification, Cloning and Structural Analysis of Major Genes from Portulaca oleracea L. Hairy Roots that Involved in the Biosynthesis of Dopamine
Dopamine is one of the important medications of Portulaca oleracea L. To optimize the production of dopamine, one of the methods is the identification and engineering of metabolite pathways. To investigate the tyrosine decarboxylase (TDC) and tyrosinase, which seem to be the most important genes in dopamine synthesis pathway, hairy roots were produced from Portulaca oleracea using Agrobacterium...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 361 Pt 3 شماره
صفحات -
تاریخ انتشار 2002